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Abstract. Bi-partite percolation is discussed in the context of gelation. The partial generat- 
ing function method is used to derive expansions for the mean number of clusters and for 
the weight-average molecular weight in terms of the reactant concentrations, a and b. 
Renormalisation group and other arguments imply that the critical behaviour in bi-partite 
percolation is determined by the 'ordinary' percolation fixed point at a* = b* = p ' .  

1. Introduction 

In this paper a discussion is given of the properties of the site percolation model on 
a bi-partite lattice where the sublattice sites are occupied with different probabilities 
a and b. This model arises naturally in the application of the partial generating function 
method (Sykes 1986a) to site percolation (Sykes 1986d, Sykes and  Wilkinson 1986a). 
Here we use the formalism of Wilkinson (1986a) to produce local generating functions 
and  thus derive expansions for the mean number of clusters and for the weight-average 
molecular weight (mean size) as double power series in the variables a and b. 

The connection between gelation and percolation has long been known; see, for 
example, the recent review by Jouhier et a1 (1983). The classical theory of gelation 
(Flory 1941a, b, c, Stockmayer 1943, 1944) is equivalent to percolation on a Bethe 
pseudo-lattice and has a mean field character. Percolation on a real lattice is presumably 
a more suitable model of gelation because of the inclusion of the excluded volume 
interaction and the possibility of loops of all sizes. The correspondence is not, however, 
exact; one failing is that, in percolation, there is only one concentration, p ,  whereas 
in chemical gelation there is normally more than one reactant. When applying the 
percolation model to gelation it is therefore usually assumed that the mean ratios of 
reactant concentrations are the same in clusters of all sizes. I t  is suggested here that 
bi-partite percolation may be a good model for gelation especially in the case of 
polyfunctional condensation. There is, of course, no real difficulty if only bi-partite 
and ordinary percolation have the same critical behaviour, which is indeed the result 
found below. 

The plan of this paper is as follows: in 9: 2 the local generating function formalism 
is modified for the present problem and the derived series expansions are given. In  
9: 3 a small cell real space renormalisation group ( R S R G )  treatment is presented together 
with other arguments in favour of ordinary and bi-partite percolation having the same 
universality class ( u c ) .  Finally, in 5 4 some concluding remarks are made. 
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2. The local generating function formalism for bi-partite percolation 

The site percolation problem is the most complicated problem tackled to date with 
the local generating function formalism. (For terminology and notation see Wilkinson 
(1986a).) It turns out to be completely different in character to bond percolation; there 
is no simple correspondence between site animals and site percolation as there is 
between bond animals and bond percolation (Sykes 1986c, Wilkinson 1986a). The 
technique described here uses the ideas of perimerer polynomials (Domb 1959) to 
calculate mean number and mean size functions for each A cluster considered as a 
finite graph. To do this one must consider all possible combinations of occupied and 
vacant sites; on an n(A) site A cluster there are 2"'*) combinations. Note that when 
all of the A sites are occupied the method must reduce to that for strong embeddings 
(Sykes 1986a, Wilkinson 1986a). The new feature in this problem is that the variables 
in the substitution depend on the occupancy of the sites. In particular, a factor of 
(1 - a )  must be carried every time a vacant A site is selected by one or more of the 
bridges. Consider the cluster with n(A) = 3  shown in figure 1. The labelled code 
(Wilkinson 1986a) for this cluster is { 1) = 2, (2) = 1, (3) = 2, {1,2} = 1, { 1,3} = 0, {2,3} = 1 
and {1,2,3} = 1. If all sites are occupied and if the presence of a B site is represented 
by a factor y, then from previous considerations (Wilkinson 1986a) the unrestricted 
dummy enumerator is given by 

G3 = (1+y[l])"~(l+y[2]) '2'( l+y[3]) '3~(l+y[l ,  2])'132'(1 +y[l ,  3])'1-3' 

x (1 + y[2, 3])'233)( 1 + y [  1, 2, 3])'13233). (1) 

Now consider the same graph with only sites 1 and 2 occupied. The unrestricted 
dummy enumerator is denoted by Gl,2,3.. If there were only two A sites then 

G 2 =  ( l+y[ l ] )" ) ( l  +y[2])'"(1+y[l,2])'1.2'. (2) 
This now has to be generalised because sites 1 and 2 can be connected via bridge 
{ 1,2,3} and it is necessary to record that site 3 is vacant ( w3 is used for this purpose). 
Thus 

Similar considerations apply to G1,2',3 and G1,,2,3. At this stage note that the dummy 
matrix is still valid if suitable correspondences are made between the occupied sites 

Figure 1. Example cluster. 
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and the dummy substitution of the same order, e.g. in (3)  above one uses the dummy 
matrix for order 2. 

When only site 1 is occupied, 

G,*2, ,39 = ( 1  +y[l])'"( 1 + w,y[ 1])"'21( 1 + w3y[ l])i',31( 1 + w2w3y[ 1]) i"233)  (4) 

and similarly for G,z,2,3. and Gl',2',3. 
The above equations will, as they stand, produce contributions to the mean number 

series. When the expansions are carried out and terms are collected then one forms 
an additional series (for the mean size) by weighting each term by the square of the 
number of occupied sites that it represents. This is accomplished by differentiation, 
not forgetting the presence of the A sites. For both series one recovers the required 
expansion variables by making the following substitutions. 

(i)  Set y = b / (  1 - b) .  
(ii) Set w r  = ( 1  - a )  for all k, m 2 1 .  
(iii) Multiply the complete expansion by a factor aIL1(1 - b)",  where L is the set of 

The zeroth-order contribution corresponding to no occupied A sites is 
occupied sites and z is the number of B sites adjacent to the sites in  L. 

+ (1 - 1,2,  . 

where the summations extend over all bridges of the indicated order. 
It is apparent that a substitution for this problem cannot be formulated in quite 

the same manner as for previous problems because of the complexity of the sequence 
of operations. It is, however, possible to write down a general prescription for the 
unrestricted dummy enumerator and also to define expanded auxiliary polynomials 
(see below). Consider the set of A sites Y = { 1,2, . . . , n(A)}. As described above there 
are 2n(A)-  1 cases to consider (plus the zeroth contribution, (5)).  Let us call the ith 
subset of Y L,(  # 0, the empty set for any i). Let M, be thejth subset of L, (j = 1, 2lL' '  - 
IM,I - l ) ,  not including 0 and define the set Sk as the kth subset of Y\L, (k = 1 ,  21"'L11) 
with elements Sk,r and also the union sets TJk = M, U sk. Then the unrestricted dummy 
enumerator is given by 

and the expanded auxiliary polynomials are given by 

The 'expanded' polynomials are more complicated than the auxiliary polynomials 
encountered previously because there are several factors corresponding to more than 
one bridge; the one-to-one correspondence between elements of the labelled code and 
auxiliary polynomials has been lost. 

Using the procedure outlined above all contributions to the mean number and 
mean size from five A sites on the sc and BCC lattices have been calculated. The 
calculations required 6 min of CPU time (Cray 1s) and 38 min respectively. Note that 
the technique described by Sykes and Wilkinson (1986a) for the determination of the 
mean number series is far more efficient than the present method-a point discussed 
further in the conclusions. The mean number expansions derived here agree with those 
given by Sykes and Wilkinson (1986a) and thus provide an independent check. For 
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the unnormalised mean size series (Sykes and  Wilkinson 1986b) on the sc lattice one 
finds 

S:c = 0.5(a + b)& 

= ( a  + b)/2+6ab + 15(a + b)ab+ 114a2b2+219(a + b ) a 2 b 2  

-96(a’+ b 2 ) a 2 b 2 +  1734a3b3 + 2877(a + b)a36’ 

- 3048(a2+ b2)a3b3 +25 670a4b4+696(a3+ b3)a3b3 

+35 2 8 3 ( ~ +  b)a4b4-70074(a2+ b2)a4b4+373 722a5b5 

+ 3 4 0 5 0 ( ~ ~ + b ~ ) ~ ~ b ~ + 4 0 1  2 8 3 ( ~ + b ) ~ ~ b ’ - 5 4 4 8 ( ~ ~ + b ~ ) ~ ~ b ~  

- 1386048(a2+b2)a5b5+5479 266a6b6 

+lo83 126(a3+b3)a5b5+4104759(a+b)a6b6+.  . . . (8) 

Note that not all of the contributions the method provides are quoted, only sufficient 
to determine the ordinary percolation series by setting a = b. In fact, if one wishes to 
numerically investigate the phase diagram then the other contributions are required 
(terms with small power of a and large power of b, and vice versa, see below). For 
the BCC lattice one finds 

SgCc = 0.5(a + b)SBcc 

= ( U  + b)/2+ 8ab + 28( U + b)ab  + 248a2b2+ 616( U + b)a2b2+6512a3b3 

- 4 1 1 ( ~ ~ + b * ) ~ ~ b ~ +  13 150(a+b)a3b3+ l68(a3+b3)a2b2 

+ 159 440a4b4-22 896(a2+ b2)a3b3-48(a4+ b4)a2b2 

+249 184(a+b)a4b4+17 184(a3+b3)a3b3 

.- 7560( a4+ b4)a3b3 - 889 662( a’+ b2)a4b4+4001 552a5b5 

+1923(a5+bS)a3b3+1047 564(a3+b3)a4b4+4143 044(a+b)a5b5 

- 360(a6+ b6)a’b3 - 715 554( 

-29 613 4 8 8 ( ~ * +  b 2 ) a S b 5 +  101 014 064a6b6+48(a7+ b7)a3b3 

b4)a4b4 

+324078(a5+ b5)a4b4+50 362 256(u3+ b 3 ) a 5 b 5  

+50830584(a+b)a6b6+.  . .  . (9) 

Note that extra terms have been added to (8)  and  (9) by calculating the undetermined 
coefficients from published data (Sykes et a1 1976, Sykes and Wilkinson 1986b) and  
the requirement that (8) and (9) reduce to the ordinary percolation series when a = b. 

3. Critical exponents and the bi-partite percolation phase diagram 

In  this section it is argued that bi-partite and  ordinary percolation are in the same uc. 
One begins by noting some general features: i t  has already been mentioned that when 
a = b ordinary percolation is recovered. Similarly when a = 1 or b = 1 the bi-partite 
problem is transformed into an  ordinary percolation problem on a different lattice. 
For the simple quadratic (SQ) lattice, for example, this results in another SQ lattice but 
with first- and  second-neighbour contacts (the square matching or  SQM lattice). Another 
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special case is obtained if a = 1 - b, when AB or anti-percolation is recovered (on 
bi-partite lattices only). (Some relevant references are Peruggi et a1 (1984), Monroy 
et ai (1982), Halley and Mai (1981) and for a recent review see Halley (1983).) AB 
percolation is apparently in the same u c  as ordinary percolation although there is 
uncertainty over the triangular lattice (Halley and Mai 1981). This is of no immediate 
concern because the methods described here are, at present, only applicable to bi-partite 
lattices. Thus several points on the bi-partite percolation phase diagram are already 
known (figure 3)  and the behaviour at these points is that of ordinary percolation. 
Anticipating, there is no reason to believe that there should be a change in this behaviour 
at other points on the critical curve. 

By selecting a lattice site and considering the probability that there is a finite cluster 
attached to this origin (Essam 1972) it is easy to show that in one dimension the 
percolation probability is zero for a, b < 1, as in ordinary percolation. Similarly, for 
the Bethe lattice of coordination number 3 the equation of the critical curve is 

4acbc = 1 (10) 

and the percolation probability for A sites is 

( l -acbc/ab)+ . . .  P a - -  
(2a + 1 )  

6 

so that p = 1 ,  as in the case of ordinary percolation. 
Useful information about universality can be obtained from simple RG arguments. 

Below a small cell RSRG analysis (see, e.g., Stanley et a1 1983) is applied to bi-partite 
percolation on the SQ lattice. This simple case is studied because it affords a qualitative 
understanding of the flows in parameter space. Following the method described by 
Reynolds et ai (1977), a 3 x 3  group of sites is renormalised into a single site (figure 
2) .  The criterion for the renormalised site to be occupied is that the original cluster 
'spans' the cell. It is obvious that various definitions of spanning can be made, although 
which definition is used is thought not to matter (Reynolds et a1 1978). If spanning 
is chosen to mean that there is at least one self-avoiding walk on the occupied sites 
going from east to west (E-W), then from a consideration of all 29 possible realisations 
of occupied and vacant sites one obtains 

U ' =  (2a2b+ ~ b ~ ) + 4 ~ ~ b ~ - ( 2 a ~ b ~ + 4 ~ ~ b ~ ) - ( 5 ~ ~ b ~ + 4 ~ ~ b ~ )  

+(2a5b2+8a4b3+4a3b4) - (2a5b3+4a4b4)+a5b4, (12) 

0 
a '  

U 

Figure 2. Cell renormalisation. 
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If spanning means going from (E-W) or (N-S) then 

a’= (4a2b+2ab2)+8u2b2 - (20a3b2+ 16a2b3+ ab4)+ (2a4b2+20a3b3+8a2b4) 

+(2a5b2+4a4b3 -8a3b4) - (4a5b3+ a4b4)+ a5b4. (13)  

(Corresponding equations are obtained for b’.) Setting a = b recovers the equations 
of Reynolds et a1 (1980). 

Both (12) and (13)  have trivial fixed points (FP) at a = b = 0 and a = b = 1 and 
non-trivial fixed points at a* = b*, where 

a* = b* = 0.619 20 

a* = b* = 0.472 63 

(E-W) 

(E-W or N-S) 

which should be compared with recent estimates of pc  = 0.59 (Djordjevic et a1 1982, 
Derrida and de Seze 1982). Linearising about the fixed point gives 

U = 1.624 ( E - W  
U =  1.511 (E-W or N-S) 

which should be compared with the presumably exact value U = $  (den Nijs 1979). 
The phase diagram is found by iterating (12) and (13) and following the flows in 
parameter space. (Equation (10) is expected to be qualitatively correct.) The phase 
boundaries for the two definitions of spanning are shown in figure 3 ,  together with 
the known points. The broken curve suggests a possible form for the exact phase 
boundary. (The value of p c  for SQM is taken from Essam (1972).) Notice that the line 
a = 1 - b does not intersect the dotted curve; this is anticipated by the result that there 
is no AB percolation phase transition on the SQ lattice (see Halley 1983). 

Note that the entire critical behaviour is determined by the ordinary percolation 
FP at a* = b*. Intuitively this is obvious; the recurrence relations a ’ = f ( a ,  6 )  and 

N -  S 

0 0.5 1 .( 
a 

Figure 3. SQ phase diagram. U denotes series estimates of p E .  
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b ' =  g ( a ,  b )  are completely symmetric in a and 6, so one would expect any FP to lie 
on the line a = b, and this is just ordinary percolation. This observation applies to any 
size cell. 

One may attempt to analyse (8) and (9) by approaching the critical curve along 
the almost perpendicular trajectory 

b = ( I  - b,)a + bo (16) 

where bo is a constant (see Agraval et a1 1979, Torrie et a1 1982). Unfortunately the 
series now only extend to a s  (since the lowest-order contribution from any factor just 
has b" replaced by a constant). Applying the usual dlog Pade analysis (see Gaunt 
and Guttmann 1974) to the resulting series for both the normalised and unnormalised 
moments leads to estimates of y. Naturally with so few terms the estimates show very 
little sign of convergence and in fact many of the approximants d o  not have a physical 
singularity. Interestingly the unnormalised moments are much better behaved than 
the normalised ones. Estimates of y lie between 1 and 2 and are consistent with the 
hypothesis that ordinary and bi-partite percolation have the same uc, but the quality 
of the data is too poor for us to draw any stronger conclusions. 

4. Conclusions 

A method has been presented for the determination of percolation series expansions 
for bi-partite percolation based on the partial generating function method of Sykes 
(1986a). The particular formalism employed is that of Wilkinson (1986a). The com- 
plexity of (6) makes the method rather slow; disappointingly so when compared with 
the success of the method in other problems (Sykes 1986a, b, c, d, Sykes and Wilkinson 
1986a, Wilkinson 1986b). When considering the mean number series Sykes and 
Wilkinson (1986a) avoided the complexity of (6) by a rather different approach. Work 
is currently in progress to extend their work to the mean size series. 

Although the analyses of the two-variable series described above are by themselves 
inconclusive, when taken with the other evidence of 8 3 there is excellent support for 
the contention that bi-partite and ordinary percolation have the same uc. For gels, 
this implies that variations in reactant concentrations are unimportant as regards critical 
properties. 
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